If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+52x+72=0
a = 3; b = 52; c = +72;
Δ = b2-4ac
Δ = 522-4·3·72
Δ = 1840
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1840}=\sqrt{16*115}=\sqrt{16}*\sqrt{115}=4\sqrt{115}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(52)-4\sqrt{115}}{2*3}=\frac{-52-4\sqrt{115}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(52)+4\sqrt{115}}{2*3}=\frac{-52+4\sqrt{115}}{6} $
| 2(3x+8)=5(1-2x) | | 6m=63 | | .60*x=13 | | 27+2y=17 | | y=2.5E-4 | | 12/13p=60 | | 2(x)(x-3)=80 | | 2x^2-25x=10 | | 9-2x=5x+9 | | x-17=2x-3 | | 2+(2x3)-3=-1 | | X+3x+6=90 | | X=(5x-7)(3x+5) | | 2+2x3-3=-1 | | -4+5x=x+24 | | -2x+(12)=6 | | 285.3344=1/3*57.76h | | -12r+8r=-12(1-2r)-11(r+2) | | 4x^2+10x=3x-3 | | d+7−3=4d+7−3=4 | | (3.6x)^2=0 | | (x=5)(-3)=18 | | 2=(98-2x) | | 4/8x=16/27 | | 8(2r+4)=-8-4r | | 5(3n-2n)/2=30 | | (x^2-16)(x+2)=0 | | (5y^2)-29y+90=0 | | 10/12x=-6 | | 3+m=25 | | 6x+18=−6 | | -40+8x=6(5+3x) |